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Self-propulsion of cellular structures in chemically reacting mixtures
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An alternative model of phase-separating reactive mixtures is proposed. In this model both phase separation
and chemical reactions simultaneously take place and a traveling coherent structure can be formed through a
Hopf bifurcation at a finite wave number. Numerical simulations show that, depending on the parameters,
either lamellar or hexagonal structures travel at constant speeds in two-dimensional systems.
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A great deal of effort has been made on the studies oHilliard equation for the order parametér= i, — 5, Wwhere
pattern formation in nonlinear dissipative systefris2]. a andysg are the local concentration of the molecufeand
Reaction-diffusion systems offer some important view pointsB, respectively and satisfy,+ ¢g=1. When the chemical
in elucidating the mechanism of pattern formation, since theyeaction of the typé= B takes place in the phase-separating
have simple mathematical structures and show a rich varietgystem, the time evolution equation of the order parameter

of patterng3,4]. #(r,t) at positionr and timet is given by[6]

On the other hand, phase separation in condensed systems
provides another mechanism of pattern formation. Domain (M—VZ oF _ 1
morphology and kinetics of phase separation have been stud- ot 5_1,/1 (Y=o, @

ied for many years both experimentally and theoreticily

In contrast to the case of reaction-diffusion systems, a patterwhere « and iy, are constants that depend on the reaction
in a phase separation process grows indefinitely and the sygtes andF is the free energy functional of the Ginzburg-
tem approaches to the final thermal equilibrium state. HowLandau type:

ever, it has been shown by theorigs-8] and experiments

[9] that some chemical reactions can stabilize the steady-

state morphology of phase-separating systems generating F[‘/’]:f dr
motionless periodic structures as stationary states.

Recently, Hildebrand and co-workel50] (see alsd11])  wherec is a positive constant anat(y) is a function ofy
have introduced a model for the traveling nanoscale strucyith two degenerate minima. Since the growth of fluctua-
tures in surface chemical reactions. In their model, both gjons with large wavelength is suppressed because of the last
chemical reaction and a first-order phase transifiphase term in Eq.(1), the characteristic size of pattern formed can
separatiopsimultaneously take place and the traveling stripenever reach a macroscopic one. In a steady state a periodic
structure appears. They consider nonlocal attractive interaGgrycture such as lamellar or hexagonal structures can be
tions between adsorbates. It is worth mentioning that a travformed depending on the value ¢ in two dimensions. It
eling stripe pattern has been observed experimentally idhoy|d be noted that Eql) has the same form as the equa-
Langmuir monolayerg12], although, to our knowledge, tjon for microphase separation in block-copolymer systems
:ehnegﬁ is no satisfactory theory to account for this phenom;s) where periodic domain structures appear in equilibrium

: 16].

The aim of this paper is to propose, from a general point  Now we consider a ternary system as a simple extension
of view, a model system for self-propulsion of cellular struc- of the above model. The system is a mixturefef B-, and
tures in phase-separating reactive mixtures. In contrast to the.type molecules. We assume that there is a strong repulsive
nonlocal interaction in Refl10], we take the usual Cahn- interaction betweerh and B molecules, and other interac-
Hilliard form for phase separation. Since the reaction termgions petween molecules are quite weak compared with the
are linear, our kinetic equations have a simpler structure than g interaction. Let us introduce two order parameters
those in Ref[10]. Furthermore, we will show in computer (1) =a— g and ¢(r,t)=a+ ¢ With the condition
simulations that not only a lamellar structure, but also a hexy, 4 . 1y =1, wherey,, ¥, andi. are the local con-
agonal structure undergoes coherent self-propulsion. centration ofA, B, and C molecules, respectively. We may

A traveling hexagonal pattern has been obtained in thgite the time evolution equations far and ¢ as
damped Kuramoto-Sivashinsky equat[di3] and in a model

equation for a neural fielfl4]. In these systems, the travel- oy
ing structures appear as a secondary bifurcation after forma-

C
5 (VZ+w(y)|, @

,0F
=V E/ﬁf(lﬂy(ﬁ), ()

tion of motionless structure. o

Consider a binary mixture of moleculésandB that un-
dergoes phase separation. We assume that time evolution of @z D,V24+g(i, &) (4)
the phase-separation process is well described by the Cahn- at ¢ 9ty ¢),
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where f (i, ) andg(y, ) are reaction termsgsee belowy, 3.5 T T T T
and D is the diffusion constant foth. For simplicity, we 1
assume in Eq(3) 3 7
25 —
oF
— =—DV%y—ry+uy?, 5 7 2tk i
oY ]
15 .
whereD, 7, andu are positive constants. Generallymight E L
depend onp such that phase separation is suppressed by th 1 i /" 7]
existence ofC molecules. However, we ignore such an effect v’ . | \ !
and explore nonequilibrium characters caused by the inter 0 0.2 0.4 0.6 0.8 1
play between phase separation and chemical reaction. "
Here we consider a hypothetical system that undergoes _ o _ _
the following cyclic chemical reactions: FIG. 1. Bifurcation lines in the ¥,,7) plane determined by

Re\(q.)=0 for D=1.0, y,=0.2, andy3=0.01. The solid and
dashed lines show the lines at which the Hopf and Turing instabili-

AEBECEA, ©) ties occur, respectively.
wherey;, y,, andy; are the reaction rates. Each step of the —g%D2—7)— ( y1+2 _ ( vy Y2, 74
above is the same type of reaction as used in Féf.Then ~ _ 2 2
the reaction terms in Eq$3) and(4) can be written as - Y2 Y2 '
2 RPRES
Y2 Y2 (11
f(, )=~ 71+?)¢_(71_?+73 d+vys, (1)
wherer= 7— 33 andq is the magnitude of the wave vector
_ 72 V2 g characterizing the spatial variation g¢fand ¢.
=—y—|=+ + 3. . . R .
9(4¢) 2 4 2 yg) ¢+ 7s ® In Fig. 1 we plot a part of bifurcation lines determined by

Re A (q.)=0 in the parameter planey(,r) for y,=0.2,

Equations(3)—(8) constitute our basic model. Hereafter, ¥3=0-01, andD=1.0, wherex(q) is the eigenvalue of
we assume, for the sake of simplicity, that the diffusionpof and g.=[7/(2D)]"? is the wave number that maximizes
is slow and we seb,=0 in Eq.(4). We also seti=1 in Eq. Re\(q). The solid and dashed lines in this figure indicate
(5). Equations(3) and(4) have an equilibrium uniform solu- the lines at which Hopf and Turing instability occur, respec-
tion: Y=y, d= o, Where tively. For the parameters below these lines, the equilibrium
solution is stable.
B If an instability occurs through a Hopf bifurcation for a
Yo= va(v2~ v1) , (9) finite g, we can expect an oscillating periodic structure. We

Y1Y2t ¥2¥3 T V3v1 plot ReXx(q) (solid line) and Im\(q) (dashed lingin Fig. 2

as functions ofy? near the bifurcation point for=1.7, v,

¥3(y2+ v1)
Y1Y2t Y2¥st ¥av1

do (10) 0.2

0.1
It should be noted that the total amount ¢fand ¢ are

conserved in time if we choose an initial condition such that

(Y= 1y and (p)= g, where(-) implies the spatial aver- Rgr)\

age. The numerical simulations shown below will be carried Im Ao

out in this situation. ’
If one replaced’2 by the minus sign in front o8F/ 8 in

0

Eq. (3), Egs. (3) and (4) are the FitzHugh-Nagumo type 02

equations used in the pattern dynamics far from equilibrium

[1]. Thus we emphasize that the model syst@rand (4) is 03, 05 1 5 5 5 3

related, on one hand, to microphase separation in therma qZ

equilibrium and, on the other hand, to the systems far from

equilibrium. FIG. 2. The wave-number dependence of\Re) (solid line)
The linear stability analysis of Eq€3) and(4) around the  and Im \(q) (dashed lingfor D=1.0, 7=1.7, y;=0.4, y,=0.2,

equilibrium solution gives us the coefficient matrix and y;=0.01.
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FIG. 3. Snapshots of the moving domainstat100 (a), 1000 02 _
(b), and 500Q(c) for 7=1.7, y,=0.4, andy,=0.2. The arrow ir(b) 0 : . ) . A
and (c) indicate the propagating direction. 1.55 1.6 1.65 1.7 1.75 1.8

-
=0.4, y,=0.2, y3=0.01, andD =1.0. Note that the growth
of long wavelength fluctuations is suppressed, SINC&ng minimum ¢ in the traveling state for the lamellaiclosed

Re A(0) is always_ negative. ) ) circles and hexagonalopen circleg patterns as functions of the
We now numerically solve Eqs3) and(4) in two dimen-  control parameter-.

sions for several sets of parametetsy,, and y,, and the

other parameters are fixed@t=1 andy;=0.01. The com-  gre similar to those reported by Hildebrand and co-workers
putation has been carried out on a ¥2B8 square lattice [10] in the surface chemical reaction systems. The speed of
with the mesh siz&x=0.5 using the finite difference Euler the tra\/e“ng structure in F|g(6) is about 0.15, which is
scheme with a fixed time stept=10"2 (we have also done close to the phase velocity 0.16 determined by the linear
the simulation withAt=10"* and observed no qualitative analysis.
difference in the resulis We have used periodic boundary  Next we show the result for=1.8, y;=0.4, andy,
conditions and chosen as initial conditions the homogeneous 0.02 (4,= —0.31¢4,=0.34) in Fig. 4. At the early stage,
states with small random perturbations that sat{gfy=,  dropletlike domains irregularly move accompanied with
and(¢)= . breakups and coalescence of domdiR&y. 4@ and 4b)]
For the parameters below the solid or dashed lines in Figand finally form a regular hexagonal pattern traveling in one
1, no pattern appears asymptotically. Above the dashed lingjirection at a constant speéabout 0.098 [Fig. 4(c)].
we have observed stationary patterns due to the Turing in- |n Fig. 5 we plot the amplitudes ofs defined by the
stability. The pattern obtained far=1.4, y;=0.2, andy,  difference of maximum and minimuny for the lamellar
=0.2 ($9=0.0,¢0=0.091) has a lamellar structure and that(closed circles and hexagonalopen circley patterns as
for 7=0.6, y;=0.04, andy,=0.02 (o= —0.14¢,=0.43)  functions of the control parameter. This result indicates
has a hexagonal structure. that, within the numerical accuracy, the bifurcation to the
On the other hand, above the solid line, we have observeglaveling lamellar pattern is supercritical, whereas formation
traveling lamellar and hexagonal patterns. Figure 3 showsf traveling hexagons is subcritical.
three snapshots of the systemtat100 (a), 1000 (b), and Now we briefly discuss the formation of traveling hexa-
5000 (c) for 7=1.7, y;=0.4, and y,=0.2 (¥ =  gons. From the above result we expect that Egsand (4)
—0.023¢;=0.070). In Fig. 3 as well as in Fig. 4 below, the (with D,=0) have a solution in the formy(r,t)= fp(r

value of ¢ is shown in gray scale, increasing from black to g . . .

white. At the early stage irregular patterns with motions of VD, $(r)=¢(r _Vt)’_ with a traveling Y?lOCItW. AHere
distorted standing waves are formiig. 3(a)]. After that, We make the approximation that the functiofs) and ¢(r)
partially coherent lamellar structures that are traveling?'® represented in terms of the lowest Fourier modes as
emerge[Fig. 3(b)]. The system eventually reaches the state 3 3

in which the lamellar structure extended to the whole system S 3 AT YT 5 aiger

. . . . ry= etk ry= et (12
is traveling at a constant spegfeig. 3(c)]. These behaviors wir) k:z_g Ya (1) k:z_g, P, (12

FIG. 5. Amplitudes ofy defined by the difference of maximum

where q,=(qg.cos(2m/3)k,q.sin(2m/3)k) (k==+1,=2,£3)
andqy=0. Note than//qoz o, and $q,= Po. From Egs(3),
(4) and(12), we obtain a set of equation fdqu, ¢qk’ andV.
Eliminating ¢qk and introducing a real amplitudk, and a
phased, as z//qszkepr 6, we finally obtain

Q0 ) A= A 307 2¢oA AR ¢+ A+ 2(AZ+AZ) Al

FIG. 4. Snapshots of the moving domainst&t100 (a), 1000 (13
(b), and 5000(c) for 7=1.8, y;=0.4, andy,=0.02. The arrow in
(c) indicates the propagating direction. for k=1,2,3[I,m=k+1k+2 (mod 3] with
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w2— (,0(2: . 0.2
Q(w)E ﬁ(a—lw), (14) 0.18
w +a 0.16
~ 0.14
where o= 01+ 0,+ 03, u=—0a(DAe— 1)~ (y1+ v2+ ¥3), < on
o =0k V, a=—(v,/2)— y3, andw,=Im \(q.) is the criti- ool
cal frequency at the Hopf bifurcation point. Note that two of <z’ ¢
the three phase variabl@g are arbitrary and only the sum 0.06
is determined by the above equations. Therefore, Ef. 0.04
and(14) under the conditiom; + w,+ w3=0 determined,, 0.02
@, andV. If we assume that the solutiofi(r —Vt) has the 0
mirror symmetry with respect to the direction df we may -0.02 0 0.02 %)4 0.06 0.08 01

have two types of solutiongl) WhenV is perpendicular to

41, @1=0 andw,=—wg; (Il) WhenV is parallel toq,, FIG. 6. Numerical solution of Eq€13) and(14) in the type-Il

w;=—2w, andw,= w3. The above two cases of type | and case. Two branches of the solution &y (solid lineg and A,

Il have been observed in Refisl3] and[14], respectively. (dashed linesare plotted as functions of.

Our numerical result shown in Fig(@ corresponds to type

I1. bifurcation points at finite wave numbers. We have also ana-
In the type-Il case, we may sét,=Az by symmetry. |yzed the equations of the amplitudes of the lowest Fourier

Numerically solving Egs(13) and(14) under this condition, modes for the traveling hexagons and obtained the results

we obtainAy, wy, ande as functions ofu. In Fig. 6 we plot  consjstent with our simulation. However, to complete our

A1, A for y;=0.4, 7,=0.02, y;=0.01, andD=1. There  analysis, we need further discussion about the stabilities of

are two branches of the solution, the upper two lines and thgye solutions. Details including the theory for oscillating

lower two lines in Fig. 6. Since our simulation shows a sub-jamellar structures will be published elsewhétd].
critical bifurcation, the solution on the upper branch can be

regarded as that for the stable traveling hexagons. In fact,
this solution gives the traveling speed 0.099, which is close The authors are grateful to A. Mikhailov for his valuable
to the observed value 0.096 in the simulation. discussion. This work was supported by the Grant-in-Aid of
In conclusion, we have proposed a different model ofMinistry of Education, Science and Culture of Japan, the
phase-separating reactive mixtures, which leads to emefSpecial Contraction Fund for Promoting Science and Tech-
gence of self-propulsion of domains. Our numerical simula-nology from the Agency of Science and Technology of Ja-
tions in two dimensions have shown that the lamellar angan, and partially by a grant from the JSPS Research for the
hexagonal structures can propagate coherently above Hopluture Program, Computational Science and Engineering.
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