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Self-propulsion of cellular structures in chemically reacting mixtures
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An alternative model of phase-separating reactive mixtures is proposed. In this model both phase separation
and chemical reactions simultaneously take place and a traveling coherent structure can be formed through a
Hopf bifurcation at a finite wave number. Numerical simulations show that, depending on the parameters,
either lamellar or hexagonal structures travel at constant speeds in two-dimensional systems.
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A great deal of effort has been made on the studies
pattern formation in nonlinear dissipative systems@1,2#.
Reaction-diffusion systems offer some important view poi
in elucidating the mechanism of pattern formation, since th
have simple mathematical structures and show a rich var
of patterns@3,4#.

On the other hand, phase separation in condensed sys
provides another mechanism of pattern formation. Dom
morphology and kinetics of phase separation have been s
ied for many years both experimentally and theoretically@5#.
In contrast to the case of reaction-diffusion systems, a pat
in a phase separation process grows indefinitely and the
tem approaches to the final thermal equilibrium state. Ho
ever, it has been shown by theories@6–8# and experiments
@9# that some chemical reactions can stabilize the stea
state morphology of phase-separating systems gener
motionless periodic structures as stationary states.

Recently, Hildebrand and co-workers@10# ~see also@11#!
have introduced a model for the traveling nanoscale st
tures in surface chemical reactions. In their model, bot
chemical reaction and a first-order phase transition~phase
separation! simultaneously take place and the traveling str
structure appears. They consider nonlocal attractive inte
tions between adsorbates. It is worth mentioning that a tr
eling stripe pattern has been observed experimentally
Langmuir monolayers@12#, although, to our knowledge
there is no satisfactory theory to account for this pheno
enon.

The aim of this paper is to propose, from a general po
of view, a model system for self-propulsion of cellular stru
tures in phase-separating reactive mixtures. In contrast to
nonlocal interaction in Ref.@10#, we take the usual Cahn
Hilliard form for phase separation. Since the reaction ter
are linear, our kinetic equations have a simpler structure t
those in Ref.@10#. Furthermore, we will show in compute
simulations that not only a lamellar structure, but also a h
agonal structure undergoes coherent self-propulsion.

A traveling hexagonal pattern has been obtained in
damped Kuramoto-Sivashinsky equation@13# and in a model
equation for a neural field@14#. In these systems, the trave
ing structures appear as a secondary bifurcation after for
tion of motionless structure.

Consider a binary mixture of moleculesA andB that un-
dergoes phase separation. We assume that time evolutio
the phase-separation process is well described by the C
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Hilliard equation for the order parameterc[cA2cB , where
cA andcB are the local concentration of the moleculesA and
B, respectively and satisfycA1cB51. When the chemica
reaction of the typeA
B takes place in the phase-separati
system, the time evolution equation of the order parame
c(r ,t) at positionr and timet is given by@6#

]c

]t
5¹2

dF

dc
2a~c2c0!, ~1!

wherea and c0 are constants that depend on the react
rates andF is the free energy functional of the Ginzburg
Landau type:

F@c#5E dr F c

2
~¹c!21w~c!G , ~2!

wherec is a positive constant andw(c) is a function ofc
with two degenerate minima. Since the growth of fluctu
tions with large wavelength is suppressed because of the
term in Eq.~1!, the characteristic size of pattern formed c
never reach a macroscopic one. In a steady state a per
structure such as lamellar or hexagonal structures can
formed depending on the value ofc0 in two dimensions. It
should be noted that Eq.~1! has the same form as the equ
tion for microphase separation in block-copolymer syste
@15#, where periodic domain structures appear in equilibriu
@16#.

Now we consider a ternary system as a simple extens
of the above model. The system is a mixture ofA-, B-, and
C-type molecules. We assume that there is a strong repul
interaction betweenA and B molecules, and other interac
tions between molecules are quite weak compared with
A-B interaction. Let us introduce two order paramete
c(r ,t)[cA2cB and f(r ,t)[cA1cB with the condition
cA1cB1cC51, wherecA , cB , andcC are the local con-
centration ofA, B, andC molecules, respectively. We ma
write the time evolution equations forc andf as

]c

]t
5¹2

dF

dc
1 f ~c,f!, ~3!

]f

]t
5Df¹2f1g~c,f!, ~4!
©2001 The American Physical Society01-1
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where f (c,f) and g(c,f) are reaction terms~see below!,
and Df is the diffusion constant forf. For simplicity, we
assume in Eq.~3!

dF

dc
52D¹2c2tc1uc3, ~5!

whereD, t, andu are positive constants. Generally,t might
depend onf such that phase separation is suppressed by
existence ofC molecules. However, we ignore such an effe
and explore nonequilibrium characters caused by the in
play between phase separation and chemical reaction.

Here we consider a hypothetical system that underg
the following cyclic chemical reactions:

A→
g1

B→
g2

C→
g3

A, ~6!

whereg1 , g2, andg3 are the reaction rates. Each step of t
above is the same type of reaction as used in Ref.@6#. Then
the reaction terms in Eqs.~3! and ~4! can be written as

f ~c,f!52S g11
g2

2 Dc2S g12
g2

2
1g3Df1g3 , ~7!

g~c,f!5
g2

2
c2S g2

2
1g3Df1g3 . ~8!

Equations~3!–~8! constitute our basic model. Hereafte
we assume, for the sake of simplicity, that the diffusion off
is slow and we setDf50 in Eq.~4!. We also setu51 in Eq.
~5!. Equations~3! and~4! have an equilibrium uniform solu
tion: c5c0 , f5f0, where

c0[
g3~g22g1!

g1g21g2g31g3g1
, ~9!

f0[
g3~g21g1!

g1g21g2g31g3g1
. ~10!

It should be noted that the total amount ofc and f are
conserved in time if we choose an initial condition such t
^c&5c0 and ^f&5f0, where^•& implies the spatial aver
age. The numerical simulations shown below will be carr
out in this situation.

If one replaces¹2 by the minus sign in front ofdF/dc in
Eq. ~3!, Eqs. ~3! and ~4! are the FitzHugh-Nagumo typ
equations used in the pattern dynamics far from equilibri
@1#. Thus we emphasize that the model system~3! and~4! is
related, on one hand, to microphase separation in the
equilibrium and, on the other hand, to the systems far fr
equilibrium.

The linear stability analysis of Eqs.~3! and~4! around the
equilibrium solution gives us the coefficient matrix
04520
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L5S 2q2~Dq22 t̃ !2S g11
g2

2 D 2S g12
g2

2
1g3D

g2

2
2S g2

2
1g3D D ,

~11!

wheret̃[t23c0
2 andq is the magnitude of the wave vecto

q characterizing the spatial variation ofc andf.
In Fig. 1 we plot a part of bifurcation lines determined b

Re l(qc)50 in the parameter plane (g1 ,t) for g250.2,
g350.01, andD51.0, wherel(q) is the eigenvalue ofL
and qc[@t̃/(2D)#1/2 is the wave number that maximize
Rel(q). The solid and dashed lines in this figure indica
the lines at which Hopf and Turing instability occur, respe
tively. For the parameters below these lines, the equilibri
solution is stable.

If an instability occurs through a Hopf bifurcation for
finite q, we can expect an oscillating periodic structure. W
plot Rel(q) ~solid line! and Iml(q) ~dashed line! in Fig. 2
as functions ofq2 near the bifurcation point fort51.7, g1

FIG. 1. Bifurcation lines in the (g1 ,t) plane determined by
Rel(qc)50 for D51.0, g250.2, andg350.01. The solid and
dashed lines show the lines at which the Hopf and Turing instab
ties occur, respectively.

FIG. 2. The wave-number dependence of Rel(q) ~solid line!
and Im l(q) ~dashed line! for D51.0, t51.7, g150.4, g250.2,
andg350.01.
1-2
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50.4, g250.2, g350.01, andD51.0. Note that the growth
of long wavelength fluctuations is suppressed, sin
Re l(0) is always negative.

We now numerically solve Eqs.~3! and~4! in two dimen-
sions for several sets of parameterst, g1, andg2, and the
other parameters are fixed atD51 andg350.01. The com-
putation has been carried out on a 1283128 square lattice
with the mesh sizeDx50.5 using the finite difference Eule
scheme with a fixed time stepDt51023 ~we have also done
the simulation withDt51024 and observed no qualitativ
difference in the results!. We have used periodic bounda
conditions and chosen as initial conditions the homogene
states with small random perturbations that satisfy^c&5c0
and ^f&5f0.

For the parameters below the solid or dashed lines in
1, no pattern appears asymptotically. Above the dashed
we have observed stationary patterns due to the Turing
stability. The pattern obtained fort51.4, g150.2, andg2
50.2 (c050.0,f050.091) has a lamellar structure and th
for t50.6, g150.04, andg250.02 (c0520.14,f050.43)
has a hexagonal structure.

On the other hand, above the solid line, we have obser
traveling lamellar and hexagonal patterns. Figure 3 sho
three snapshots of the system att5100 ~a!, 1000 ~b!, and
5000 ~c! for t51.7, g150.4, and g250.2 (c05
20.023,f050.070). In Fig. 3 as well as in Fig. 4 below, th
value ofc is shown in gray scale, increasing from black
white. At the early stage irregular patterns with motions
distorted standing waves are formed@Fig. 3~a!#. After that,
partially coherent lamellar structures that are travel
emerge@Fig. 3~b!#. The system eventually reaches the st
in which the lamellar structure extended to the whole sys
is traveling at a constant speed@Fig. 3~c!#. These behaviors

FIG. 3. Snapshots of the moving domains att5100 ~a!, 1000
~b!, and 5000~c! for t51.7, g150.4, andg250.2. The arrow in~b!
and ~c! indicate the propagating direction.

FIG. 4. Snapshots of the moving domains att5100 ~a!, 1000
~b!, and 5000~c! for t51.8, g150.4, andg250.02. The arrow in
~c! indicates the propagating direction.
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are similar to those reported by Hildebrand and co-work
@10# in the surface chemical reaction systems. The spee
the traveling structure in Fig. 3~c! is about 0.15, which is
close to the phase velocity 0.16 determined by the lin
analysis.

Next we show the result fort51.8, g150.4, andg2
50.02 (c0520.31,f050.34) in Fig. 4. At the early stage
dropletlike domains irregularly move accompanied w
breakups and coalescence of domains@Fig. 4~a! and 4~b!#
and finally form a regular hexagonal pattern traveling in o
direction at a constant speed~about 0.096! @Fig. 4~c!#.

In Fig. 5 we plot the amplitudes ofc defined by the
difference of maximum and minimumc for the lamellar
~closed circles! and hexagonal~open circles! patterns as
functions of the control parametert. This result indicates
that, within the numerical accuracy, the bifurcation to t
traveling lamellar pattern is supercritical, whereas format
of traveling hexagons is subcritical.

Now we briefly discuss the formation of traveling hex
gons. From the above result we expect that Eqs.~3! and ~4!

~with Dc50) have a solution in the formc(r ,t)5ĉ(r
2Vt), f(r ,t)5f̂(r2Vt), with a traveling velocityV. Here
we make the approximation that the functionsĉ(r ) andf̂(r )
are represented in terms of the lowest Fourier modes as

ĉ~r !5 (
k523

3

ĉqk
eiqk•r, f̂~r !5 (

k523

3

f̂qk
eiqk•r, ~12!

where qk[(qccos(2p/3)k,qcsin(2p/3)k) (k561,62,63)
andq0[0. Note thatĉq0

5c0, andf̂q0
5f0. From Eqs.~3!,

~4! and~12!, we obtain a set of equation forĉqk
, f̂qk

, andV.

Eliminating f̂qk
and introducing a real amplitudeAk and a

phaseuk as ĉqk
5Akexp(iuk), we finally obtain

V~vk!Ak5mAk23qc
2@2c0AlAme2 iw1Ak

312~Al
21Am

2 !Ak#

~13!

for k51,2,3 @l ,m5k11,k12 ~mod 3!# with

FIG. 5. Amplitudes ofc defined by the difference of maximum
and minimum c in the traveling state for the lamellar~closed
circles! and hexagonal~open circles! patterns as functions of the
control parametert.
1-3
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V~v![
v22vc

2

v21a2
~a2 iv!, ~14!

wherew[u11u21u3 , m[2qc
2(Dqc

22 t̃)2(g11g21g3),
vk[qk•V, a[2(g2/2)2g3, andvc[Im l(qc) is the criti-
cal frequency at the Hopf bifurcation point. Note that two
the three phase variablesuk are arbitrary and only the sumw
is determined by the above equations. Therefore, Eqs.~13!
and~14! under the conditionv11v21v350 determineAk ,
w, andV. If we assume that the solutionĉ(r2Vt) has the
mirror symmetry with respect to the direction ofV, we may
have two types of solutions:~I! WhenV is perpendicular to
q1 , v150 and v252v3; ~II ! When V is parallel toq1 ,
v1522v2 andv25v3. The above two cases of type I an
II have been observed in Refs.@13# and @14#, respectively.
Our numerical result shown in Fig. 4~c! corresponds to type
II.

In the type-II case, we may setA25A3 by symmetry.
Numerically solving Eqs.~13! and~14! under this condition,
we obtainAk , vk , andw as functions ofm. In Fig. 6 we plot
A1 , A2 for g150.4, g250.02, g350.01, andD51. There
are two branches of the solution, the upper two lines and
lower two lines in Fig. 6. Since our simulation shows a su
critical bifurcation, the solution on the upper branch can
regarded as that for the stable traveling hexagons. In f
this solution gives the traveling speed 0.099, which is cl
to the observed value 0.096 in the simulation.

In conclusion, we have proposed a different model
phase-separating reactive mixtures, which leads to em
gence of self-propulsion of domains. Our numerical simu
tions in two dimensions have shown that the lamellar a
hexagonal structures can propagate coherently above H
ey

v.
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bifurcation points at finite wave numbers. We have also a
lyzed the equations of the amplitudes of the lowest Fou
modes for the traveling hexagons and obtained the res
consistent with our simulation. However, to complete o
analysis, we need further discussion about the stabilities
the solutions. Details including the theory for oscillatin
lamellar structures will be published elsewhere@17#.
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FIG. 6. Numerical solution of Eqs.~13! and ~14! in the type-II
case. Two branches of the solution forA1 ~solid lines! and A2

~dashed lines! are plotted as functions ofm.
t.
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